Цифра- Научно-практический журнал

научно-практический интернет-журнал

Цифра №3

Цифра №2

Цифра №1

Простыми словами о сложном: как устроены ИИ и нейросети

Сегодня сфера искусственного интеллекта переживает бурный рост. Развитие машинного обучения, нейронных сетей и больших данных позволяет создавать системы, способные решать задачи, которые раньше считались невозможными для ЭВМ. Со стороны это кажется магией. Но волшебству есть научное объяснение. Рассказываем простыми словами о сложном, отвечая на самые популярные вопросы о новых технологиях.
Фото: freepik.com

Чем нейросеть отличается от искусственного интеллекта? Это одно и то же или нет?

Нейросеть — это математическая модель, которая имитирует работу человеческого мозга. А искусственный интеллект — технология, которая использует эти модели, чтобы решить задачу пользователя. Помимо нейросетей ИИ использует и другие инструменты: машинное обучение (Machine Learning), глубокое обучение (Deep Learning) и другие.

Так что нейросеть — это инструмент искусственного интеллекта. Она фокусируется на реализации конкретных задач. ИИ, в свою очередь, стремится к созданию систем, способных мыслить и действовать как люди.

Как устроена нейросеть?

Нейронная сеть состоит из искусственных нейронов, которые сделаны по подобию человеческих. Они связаны между собой и могут передавать сигналы друг другу.

Чтобы нейросеть «заработала», нужно ее обучить. Например, перед тем, как она сумеет опознавать кота на фотографии, необходимо показать ей миллионы изображений этого животного, в разных позах и условиях.

Чтобы математическая модель решала задачи быстро, разработчики придумали располагать нейроны на разных слоях. Если загрузить в нейросеть, к примеру, картинку с котом из мультика «Том и Джерри», то работа слоев будет выглядеть так:

Входной слой — получает данные. Здесь картинку разложат пиксели, каждый из которых поступит на отдельный нейрон.

Скрытые слои — решает задачу. В этом месте происходит обработка данных. Нейросеть узнает характерные черты персонажа мультсериала. Чем больше скрытых слоев, тем быстрее и точнее результат.

Выходной слой — выдает результат. Нейросеть собирает пазл воедино и отвечает: «Это известный кадр из мультсериала «Том и Джерри», из 5 серии».

Может ли одна и та же нейросеть генерировать текст и рисовать картинки?

Нет. У каждой свое назначение и представление искусственных нейронов. Вот три широко используемых типа:

Перцептрон — самый фундаментальный и старый тип. Состоит из одного нейрона, который принимает входные данные и практически сразу выдает результат. У классического варианта этой нейросети нет скрытых слоев, поэтому она может разделять данные только на две категории. Примером использования перцептрона может быть задача классификации почтовых отправлений на спам и не спам.

Однако существуют также перцептроны с дополнительными скрытыми слоями. Их могут использовать для такой задачи, как распознавание голоса.

Рекуррентные нейронные сети

Именно этот тип нейросетей помогает генерировать текст и переводить его. Их отличительная особенность — наличие памяти. Модель передает данные вперед и назад между слоями, так что процессы передачи и хранения данных цикличны. Поэтому сеть может запомнить все данные. Это помогает ей понять контекст входных данных и выдать осмысленный результат.

Сверточные нейронные сети

Их используют для распознавания изображений, видео, объектов и лиц. Она имеет не три, а пять слоев: входной, сверточный, объединяющий, связанный и выходной. Это особенно важно в условиях изменения масштаба и угла наклона картинки. Каждый слой исследует определенный аспект изображения, а затем соединяет всю информацию вместе на выходе.

К примеру, для того, чтобы распознать лицо на фотографии, нейросети сначала нужно обнаружить лицо на фотографии, затем — глаза и нос, потом идентифицировать другие детали лица, повернуть данные в соответствии с заданным алгоритмом, а затем обработать и выдать результат.

В чем разница между машинным и глубоким обучением ИИ?

Под машинным обучением понимается любое обучение искусственного интеллекта за счет решения множества сходных задач. А глубокое обучение — передовая методология машинного. С помощью нее ИИ получает информацию из множества источников и анализирует ее без вмешательства человека.

Глубокое обучение используется, к примеру, в беспилотных автомобилях для автоматического обнаружения дорожных знаков и пешеходов. Также его могут задействовать в анализе медицинских изображений для обнаружения раковых клеток.

Частова Ксения